Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tensor network ranks (1801.02662v2)

Published 8 Jan 2018 in math.NA

Abstract: In problems involving approximation, completion, denoising, dimension reduction, estimation, interpolation, modeling, order reduction, regression, etc, we argue that the near-universal practice of assuming that a function, matrix, or tensor (which we will see are all the same object in this context) has \emph{low rank} may be ill-justified. There are many natural instances where the object in question has high rank with respect to the classical notions of rank: matrix rank, tensor rank, multilinear rank --- the latter two being the most straightforward generalizations of the former. To remedy this, we show that one may vastly expand these classical notions of ranks: Given any undirected graph $G$, there is a notion of $G$-rank associated with $G$, which provides us with as many different kinds of ranks as there are undirected graphs. In particular, the popular tensor network states in physics (e.g., \textsc{mps}, \textsc{ttns}, \textsc{peps}) may be regarded as functions of a specific $G$-rank for various choices of $G$. Among other things, we will see that a function, matrix, or tensor may have very high matrix, tensor, or multilinear rank and yet very low $G$-rank for some $G$. In fact the difference is in the orders of magnitudes and the gaps between $G$-ranks and these classical ranks are arbitrarily large for some important objects in computer science, mathematics, and physics. Furthermore, we show that there is a $G$ such that almost every tensor has $G$-rank exponentially lower than its rank or the dimension of its ambient space.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.