Papers
Topics
Authors
Recent
2000 character limit reached

Monte Carlo modified profile likelihood in models for clustered data

Published 8 Jan 2018 in stat.ME and stat.CO | (1801.02597v3)

Abstract: The main focus of the analysts who deal with clustered data is usually not on the clustering variables, and hence the group-specific parameters are treated as nuisance. If a fixed effects formulation is preferred and the total number of clusters is large relative to the single-group sizes, classical frequentist techniques relying on the profile likelihood are often misleading. The use of alternative tools, such as modifications to the profile likelihood or integrated likelihoods, for making accurate inference on a parameter of interest can be complicated by the presence of nonstandard modelling and/or sampling assumptions. We show here how to employ Monte Carlo simulation in order to approximate the modified profile likelihood in some of these unconventional frameworks. The proposed solution is widely applicable and is shown to retain the usual properties of the modified profile likelihood. The approach is examined in two instances particularly relevant in applications, i.e. missing-data models and survival models with unspecified censoring distribution. The effectiveness of the proposed solution is validated via simulation studies and two clinical trial applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.