Trading the Twitter Sentiment with Reinforcement Learning
Abstract: This paper is to explore the possibility to use alternative data and artificial intelligence techniques to trade stocks. The efficacy of the daily Twitter sentiment on predicting the stock return is examined using machine learning methods. Reinforcement learning(Q-learning) is applied to generate the optimal trading policy based on the sentiment signal. The predicting power of the sentiment signal is more significant if the stock price is driven by the expectation of the company growth and when the company has a major event that draws the public attention. The optimal trading strategy based on reinforcement learning outperforms the trading strategy based on the machine learning prediction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.