Nonequilibrium uncertainty principle from information geometry (1801.02242v2)
Abstract: With a statistical measure of distance, we derive a classical uncertainty relation for processes traversing nonequilibrium states both transiently and irreversibly. The geometric uncertainty associated with dynamical histories that we define is an upper bound for the entropy production and flow rates, but it does not necessarily correlate with the shortest distance to equilibrium. For a model one-bit memory device, we find that expediting the erasure protocol increases the maximum dissipated heat and geometric uncertainty. A driven version of Onsager's three-state model shows that a set of dissipative, high-uncertainty initial conditions, some of which are near equilibrium, scar the state space.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.