Spectral properties of 2D Pauli operators with almost periodic electromagnetic fields (1801.01346v3)
Abstract: We consider a 2D Pauli operator with almost periodic field $b$ and electric potential $V$. First, we study the ergodic properties of $H$ and show, in particular, that its discrete spectrum is empty if there exists an almost periodic magnetic potential which generates the magnetic field $b - b_{0}$, $b_{0}$ being the mean value of $b$. Next, we assume that $V = 0$, and investigate the zero modes of $H$. As expected, if $b_{0} \neq 0$, then generically $\operatorname{dim} \operatorname{Ker} H = \infty$. If $b_{0} = 0$, then for each $m \in {\mathbb N} \cup { \infty }$, we construct almost periodic $b$ such that $\operatorname{dim} \operatorname{Ker} H = m$. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.