Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Decision Making with Limited Observation Capability: Application to Wireless Networks (1801.01301v2)

Published 4 Jan 2018 in cs.SY, cs.IT, and math.IT

Abstract: This work studies a generalized class of restless multi-armed bandits with hidden states and allow cumulative feedback, as opposed to the conventional instantaneous feedback. We call them lazy restless bandits (LRB) as the events of decision-making are sparser than events of state transition. Hence, feedback after each decision event is the cumulative effect of the following state transition events. The states of arms are hidden from the decision-maker and rewards for actions are state dependent. The decision-maker needs to choose one arm in each decision interval, such that long term cumulative reward is maximized. As the states are hidden, the decision-maker maintains and updates its belief about them. It is shown that LRBs admit an optimal policy which has threshold structure in belief space. The Whittle-index policy for solving LRB problem is analyzed; indexability of LRBs is shown. Further, closed-form index expressions are provided for two sets of special cases; for more general cases, an algorithm for index computation is provided. An extensive simulation study is presented; Whittle-index, modified Whittle-index and myopic policies are compared. Lagrangian relaxation of the problem provides an upper bound on the optimal value function; it is used to assess the degree of sub-optimality various policies.

Summary

We haven't generated a summary for this paper yet.