Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Variable Ordination of Modified Cholesky Decomposition for Sparse Covariance Matrix Estimation (1801.00380v3)

Published 1 Jan 2018 in math.ST and stat.TH

Abstract: Estimation of large sparse covariance matrices is of great importance for statistical analysis, especially in the high-dimensional settings. The traditional approach such as the sample covariance matrix performs poorly due to the high dimensionality. The modified Cholesky decomposition (MCD) is a commonly used method for sparse covariance matrix estimation. However, the MCD method relies on the order of variables, which is often not available or cannot be pre-determined in practice. In this work, we solve this order issue by obtaining a set of covariance matrix estimates under different orders of variables used in the MCD. Then we consider an ensemble estimator as the "center" of such a set of covariance matrix estimates with respect to the Frobenius norm. The proposed method not only ensures the estimator to be positive definite, but also can capture the underlying sparse structure of the covariance matrix. Under some weak regularity conditions, we establish both algorithmic convergence and asymptotical convergence of the proposed method. The merits of the proposed method are illustrated through simulation studies and one real data example.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube