2000 character limit reached
Accurate Bayesian Data Classification without Hyperparameter Cross-validation (1712.09813v1)
Published 28 Dec 2017 in stat.ME, cs.LG, math.ST, and stat.TH
Abstract: We extend the standard Bayesian multivariate Gaussian generative data classifier by considering a generalization of the conjugate, normal-Wishart prior distribution and by deriving the hyperparameters analytically via evidence maximization. The behaviour of the optimal hyperparameters is explored in the high-dimensional data regime. The classification accuracy of the resulting generalized model is competitive with state-of-the art Bayesian discriminant analysis methods, but without the usual computational burden of cross-validation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.