Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Characterization of the Two-Dimensional Five-Fold Translative Tiles (1712.09732v4)

Published 26 Dec 2017 in math.MG

Abstract: In 1885, Fedorov discovered that a convex domain can form a lattice tiling of the Euclidean plane if and only if it is a parallelogram or a centrally symmetric hexagon. It is known that there is no other convex domain which can form two-, three- or four-fold translative tiling in the Euclidean plane, but there are centrally symmetric convex octagons and decagons which can form five-fold translative tilings. This paper characterizes all the convex domains which can form five-fold translative tilings of the Euclidean plane.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.