Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Calibration of the TPC Drift Time in the ALICE High Level Trigger (1712.09423v1)

Published 26 Dec 2017 in physics.ins-det

Abstract: ALICE (A Large Ion Collider Experiment) is one of four major experiments at the Large Hadron Collider (LHC) at CERN. The High Level Trigger (HLT) is a compute cluster, which reconstructs collisions as recorded by the ALICE detector in real-time. It employs a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs subdetectors sensitive to environmental conditions such as pressure and temperature, e.g. the Time Projection Chamber (TPC). A precise reconstruction of particle trajectories requires the calibration of these detectors. Performing the calibration in real time in the HLT improves the online reconstructions and renders certain offline calibration steps obsolete speeding up offline physics analysis. For LHC Run 3, starting in 2020 when data reduction will rely on reconstructed data, online calibration becomes a necessity. Reconstructed particle trajectories build the basis for the calibration making a fast online-tracking mandatory. The main detectors used for this purpose are the TPC and ITS (Inner Tracking System). Reconstructing the trajectories in the TPC is the most compute-intense step. We present several improvements to the ALICE High Level Trigger developed to facilitate online calibration. The main new development for online calibration is a wrapper that can run ALICE offline analysis and calibration tasks inside the HLT. On top of that, we have added asynchronous processing capabilities to support long-running calibration tasks in the HLT framework, which runs event-synchronously otherwise. In order to improve the resiliency, an isolated process performs the asynchronous operations such that even a fatal error does not disturb data taking. We have complemented the original loop-free HLT chain with ZeroMQ data-transfer components. [...]

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.