Papers
Topics
Authors
Recent
2000 character limit reached

Find the Conversation Killers: a Predictive Study of Thread-ending Posts (1712.08636v1)

Published 22 Dec 2017 in cs.CL and cs.SI

Abstract: How to improve the quality of conversations in online communities has attracted considerable attention recently. Having engaged, urbane, and reactive online conversations has a critical effect on the social life of Internet users. In this study, we are particularly interested in identifying a post in a multi-party conversation that is unlikely to be further replied to, which therefore kills that thread of the conversation. For this purpose, we propose a deep learning model called the ConverNet. ConverNet is attractive due to its capability of modeling the internal structure of a long conversation and its appropriate encoding of the contextual information of the conversation, through effective integration of attention mechanisms. Empirical experiments on real-world datasets demonstrate the effectiveness of the proposal model. For the widely concerned topic, our analysis also offers implications for improving the quality and user experience of online conversations.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.