Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Parallel Complexity of Forward and Backward Propagation (1712.06577v1)

Published 18 Dec 2017 in cs.LG, cs.AI, and math.NA

Abstract: We show that the forward and backward propagation can be formulated as a solution of lower and upper triangular systems of equations. For standard feedforward (FNNs) and recurrent neural networks (RNNs) the triangular systems are always block bi-diagonal, while for a general computation graph (directed acyclic graph) they can have a more complex triangular sparsity pattern. We discuss direct and iterative parallel algorithms that can be used for their solution and interpreted as different ways of performing model parallelism. Also, we show that for FNNs and RNNs with $k$ layers and $\tau$ time steps the backward propagation can be performed in parallel in O($\log k$) and O($\log k \log \tau$) steps, respectively. Finally, we outline the generalization of this technique using Jacobians that potentially allows us to handle arbitrary layers.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.