Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Minimal area surfaces in AdS_{n+1} and Wilson loops (1712.06269v1)

Published 18 Dec 2017 in hep-th

Abstract: The AdS/CFT correspondence relates the expectation value of Wilson loops in N=4 SYM to the area of minimal surfaces in AdS_5 In this paper we consider minimal area surfaces in generic Euclidean AdS_{n+1} using the Pohlmeyer reduction in a similar way as we did previously in Euclidean AdS_3. As in that case, the main obstacle is to find the correct parameterization of the curve in terms of a conformal parameter. Once that is done, the boundary conditions for the Pohlmeyer fields are obtained in terms of conformal invariants of the curve. After solving the Pohlmeyer equations, the area can be expressed as a boundary integral involving a generalization of the conformal arc-length, curvature and torsion of the curve. Furthermore, one can introduce the \lambda-deformation symmetry of the contours by a simple change in the conformal invariants. This determines the \lambda-deformed contours in terms of the solution of a boundary linear problem. In fact the condition that all \lambda deformed contours are periodic can be used as an alternative to solving the Pohlmeyer equations and is equivalent to imposing the vanishing of an infinite set of conserved charges derived from integrability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube