Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems (1712.05910v1)

Published 16 Dec 2017 in math.OC

Abstract: The sparse group Lasso is a widely used statistical model which encourages the sparsity both on a group and within the group level. In this paper, we develop an efficient augmented Lagrangian method for large-scale non-overlapping sparse group Lasso problems with each subproblem being solved by a superlinearly convergent inexact semismooth Newton method. Theoretically, we prove that, if the penalty parameter is chosen sufficiently large, the augmented Lagrangian method converges globally at an arbitrarily fast linear rate for the primal iterative sequence, the dual infeasibility, and the duality gap of the primal and dual objective functions. Computationally, we derive explicitly the generalized Jacobian of the proximal mapping associated with the sparse group Lasso regularizer and exploit fully the underlying second order sparsity through the semismooth Newton method. The efficiency and robustness of our proposed algorithm are demonstrated by numerical experiments on both the synthetic and real data sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.