Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Particle Swarm Optimization-based Flexible Convolutional Auto-Encoder for Image Classification (1712.05042v2)

Published 13 Dec 2017 in cs.NE

Abstract: Convolutional auto-encoders have shown their remarkable performance in stacking to deep convolutional neural networks for classifying image data during past several years. However, they are unable to construct the state-of-the-art convolutional neural networks due to their intrinsic architectures. In this regard, we propose a flexible convolutional auto-encoder by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional convolutional auto-encoder. We also design an architecture discovery method by using particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed flexible convolutional auto-encoder with much less computational resource and without any manual intervention. We use the designed architecture optimization algorithm to test the proposed flexible convolutional auto-encoder through utilizing one graphic processing unit card on four extensively used image classification datasets. Experimental results show that our work in this paper significantly outperform the peer competitors including the state-of-the-art algorithm.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.