Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Constructions cachées en algèbre abstraite. Dimension de Krull, Going Up, Going Down (revised version, 2008) (1712.04728v2)

Published 13 Dec 2017 in math.AC

Abstract: Nous rappelons des versions constructives de la th\'eorie de la dimension de Krull dans les anneaux commutatifs et dans les treillis distributifs, dont les bases ont \'et\'e pos\'ees par Joyal, Espan~ol et les deux auteurs. Nous montrons sur les exemples de la dimension des alg`ebres de pr\'esentation finie, du Going Up, du Going Down \ldots que cela nous permet de donner une version constructive de grands th\'eor`emes classiques, et par cons\'equent de r\'ecup\'erer un contenu calculatoire explicite lorsque ces th\'eor`emes abstraits sont utilis\'es pour d\'emontrer l'existence d'objets concrets. Nous pensons ainsi mettre en oeuvre une r\'ealisation partielle du programme de Hilbert pour l'alg`ebre abstraite classique. We present constructive versions of Krull's dimension theory for commutative rings and distributive lattices. The foundations of these constructive versions are due to Joyal, Espan~ol and the authors. We show that this gives a constructive version of basic classical theorems (dimension of finitely presented algebras, Going up and Going down theorem, \ldots), and hence that we get an explicit computational content when these abstract results are used to show the existence of concrete elements. This can be seen as a partial realisation of Hilbert's program for classical abstract commutative algebra.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.