Papers
Topics
Authors
Recent
2000 character limit reached

On a generalization of the Bessel function Neumann expansion (1712.04387v1)

Published 12 Dec 2017 in math.NA

Abstract: The Bessel-Neumann expansion (of integer order) of a function $g:\mathbb{C}\rightarrow\mathbb{C}$ corresponds to representing $g$ as a linear combination of basis functions $\phi_0,\phi_1,\ldots$, i.e., $g(z)=\sum_{\ell = 0}\infty w_\ell \phi_\ell(s)$, where $\phi_i(z)=J_i(z)$, $i=0,\ldots$, are the Bessel functions. In this work, we study an expansion for a more general class of basis functions. More precisely, we assume that the basis functions satisfy an infinite dimensional linear ordinary differential equation associated with a Hessenberg matrix, motivated by the fact that these basis functions occur in certain iterative methods. A procedure to compute the basis functions as well as the coefficients is proposed. Theoretical properties of the expansion are studied. We illustrate that non-standard basis functions can give faster convergence than the Bessel functions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.