Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Popularity of Job Skills in Recruitment Market: A Multi-Criteria Approach (1712.03087v1)

Published 6 Dec 2017 in cs.CY

Abstract: To cope with the accelerating pace of technological changes, talents are urged to add and refresh their skills for staying in active and gainful employment. This raises a natural question: what are the right skills to learn? Indeed, it is a nontrivial task to measure the popularity of job skills due to the diversified criteria of jobs and the complicated connections within job skills. To that end, in this paper, we propose a data driven approach for modeling the popularity of job skills based on the analysis of large-scale recruitment data. Specifically, we first build a job skill network by exploring a large corpus of job postings. Then, we develop a novel Skill Popularity based Topic Model (SPTM) for modeling the generation of the skill network. In particular, SPTM can integrate different criteria of jobs (e.g., salary levels, company size) as well as the latent connections within skills, thus we can effectively rank the job skills based on their multi-faceted popularity. Extensive experiments on real-world recruitment data validate the effectiveness of SPTM for measuring the popularity of job skills, and also reveal some interesting rules, such as the popular job skills which lead to high-paid employment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tong Xu (113 papers)
  2. Hengshu Zhu (66 papers)
  3. Chen Zhu (103 papers)
  4. Pan Li (164 papers)
  5. Hui Xiong (244 papers)
Citations (66)