Papers
Topics
Authors
Recent
2000 character limit reached

Product Function Need Recognition via Semi-supervised Attention Network (1712.02186v1)

Published 6 Dec 2017 in cs.CL

Abstract: Functionality is of utmost importance to customers when they purchase products. However, it is unclear to customers whether a product can really satisfy their needs on functions. Further, missing functions may be intentionally hidden by the manufacturers or the sellers. As a result, a customer needs to spend a fair amount of time before purchasing or just purchase the product on his/her own risk. In this paper, we first identify a novel QA corpus that is dense on product functionality information \footnote{The annotated corpus can be found at \url{https://www.cs.uic.edu/~hxu/}.}. We then design a neural network called Semi-supervised Attention Network (SAN) to discover product functions from questions. This model leverages unlabeled data as contextual information to perform semi-supervised sequence labeling. We conduct experiments to show that the extracted function have both high coverage and accuracy, compared with a wide spectrum of baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.