Papers
Topics
Authors
Recent
2000 character limit reached

Continuity of Plurisubharmonic Envelopes in Non-Archimedean Geometry and Test Ideals (with an Appendix by José Ignacio Burgos Gil and Martín Sombra) (1712.00980v3)

Published 4 Dec 2017 in math.AG and math.NT

Abstract: Let L be an ample line bundle on a smooth projective variety X over a non-archimedean field K. For a continuous metric on L, we show in the following two cases that the semipositive envelope is a continuous semipositive metric on L and that the non-archimedean Monge-Amp`ere equation has a solution. First, we prove it for curves using results of Thuillier. Second, we show it under the assumption that X is a surface defined geometrically over the function field of a curve over a perfect field k of positive characteristic. The second case holds in higher dimensions if we assume resolution of singularities over k. The proof follows a strategy from Boucksom, Favre and Jonsson, replacing multiplier ideals by test ideals. Finally, the appendix by Burgos and Sombra provides an example of a semipositive metric whose retraction is not semipositive. The example is based on the construction of a toric variety which has two SNC-models which induce the same skeleton but different retraction maps.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.