Papers
Topics
Authors
Recent
2000 character limit reached

InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity

Published 1 Dec 2017 in cs.CV and cs.AI | (1712.00193v3)

Abstract: We demonstrate an approach to face attribute detection that retains or improves attribute detection accuracy across gender and race subgroups by learning demographic information prior to learning the attribute detection task. The system, which we call InclusiveFaceNet, detects face attributes by transferring race and gender representations learned from a held-out dataset of public race and gender identities. Leveraging learned demographic representations while withholding demographic inference from the downstream face attribute detection task preserves potential users' demographic privacy while resulting in some of the best reported numbers to date on attribute detection in the Faces of the World and CelebA datasets.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.