2000 character limit reached
Maximizers of Rogers-Brascamp-Lieb-Luttinger functionals in higher dimensions (1712.00109v1)
Published 30 Nov 2017 in math.CA
Abstract: A symmetrization inequality of Rogers and of Brascamp-Lieb-Luttinger states that for a certain class of multilinear integral expressions, among tuples of sets of prescribed Lebesgue measures, tuples of balls centered at the origin are among the maximizers. Under natural hypotheses, we characterize all maximizing tuples for these inequalities for dimensions strictly greater than 1. We establish a sharpened form of the inequality.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.