Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intelligent Traffic Light Control Using Distributed Multi-agent Q Learning (1711.10941v1)

Published 29 Nov 2017 in cs.SY and cs.MA

Abstract: The combination of AI and Internet-of-Things (IoT), which is denoted as AI-powered Internet-of-Things (AIoT), is capable of processing huge amount of data generated from a large number of devices and handling complex problems in social infrastructures. As AI and IoT technologies are becoming mature, in this paper, we propose to apply AIoT technologies for traffic light control, which is an essential component for intelligent transportation system, to improve the efficiency of smart city's road system. Specifically, various sensors such as surveillance cameras provide real-time information for intelligent traffic light control system to observe the states of both motorized traffic and non-motorized traffic. In this paper, we propose an intelligent traffic light control solution by using distributed multi-agent Q learning, considering the traffic information at the neighboring intersections as well as local motorized and non-motorized traffic, to improve the overall performance of the entire control system. By using the proposed multi-agent Q learning algorithm, our solution is targeting to optimize both the motorized and non-motorized traffic. In addition, we considered many constraints/rules for traffic light control in the real world, and integrate these constraints in the learning algorithm, which can facilitate the proposed solution to be deployed in real operational scenarios. We conducted numerical simulations for a real-world map with real-world traffic data. The simulation results show that our proposed solution outperforms existing solutions in terms of vehicle and pedestrian queue lengths, waiting time at intersections, and many other key performance metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ying Liu (256 papers)
  2. Lei Liu (332 papers)
  3. Wei-Peng Chen (6 papers)
Citations (72)

Summary

We haven't generated a summary for this paper yet.