Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Proper Policies in Infinite-State Stochastic Shortest Path Problems (1711.10129v2)

Published 28 Nov 2017 in math.OC

Abstract: We consider stochastic shortest path problems with infinite state and control spaces, a nonnegative cost per stage, and a termination state. We extend the notion of a proper policy, a policy that terminates within a finite expected number of steps, from the context of finite state space to the context of infinite state space. We consider the optimal cost function $J*$, and the optimal cost function $\hat J$ over just the proper policies. We show that $J*$ and $\hat J$ are the smallest and largest solutions of BeLLMan's equation, respectively, within a suitable class of Lyapounov-like functions. If the cost per stage is bounded, these functions are those that are bounded over the effective domain of $\hat J$. The standard value iteration algorithm may be attracted to either $J*$ or $\hat J$, depending on the initial condition.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube