Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A sharp form of the Marcinkiewicz Interpolation Theorem for Orlicz spaces (1711.09278v1)

Published 25 Nov 2017 in math.CA

Abstract: An extension of Marcinkiewicz Interpolation Theorem, allowing intermediate spaces of Orlicz type, is proved. This generalization yields a necessary and sufficient condition so that every quasilinear operator, which maps the set, $S(X,\mu)$, of all $\mu$-measurable simple functions on $\sigma$- finite measure space $(X,\mu)$ into $M(Y,\nu)$, the class of $\nu$-measurable functions on $\sigma$- finite measure space $(Y,\nu)$, and satisfies endpoint estimates of type: $1 < p< \infty$, $1 \leq r < \infty$, \begin{equation*} \lambda \, \nu \left( \left\lbrace y \in Y : |(Tf)(y)| > \lambda \right\rbrace \right){\frac{1}{p}} \leq C_{p,r} \left( \int_{\mathbb{R_+}} \mu \left( \left\lbrace x \in X : |(f)(x)| > t \right\rbrace \right){\frac{r}{p}} t{r-1}dt \right){\frac{1}{r}}, \end{equation*} for all $f \in S(X,\mu)$ and $\lambda \in \mathbb{R_+}$; is bounded from an Orlicz space into another.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.