Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

A proof of Lusztig's conjectures for affine type $G_2$ with arbitrary parameters (1711.06551v5)

Published 17 Nov 2017 in math.RT

Abstract: We prove Lusztig's conjectures ${\bf P1}$--${\bf P15}$ for the affine Weyl group of type $\tilde{G}_2$ for all choices of parameters. Our approach to compute Lusztig's $\mathbf{a}$-function is based on the notion of a "balanced system of cell representations" for the Hecke algebra. We show that for arbitrary Coxeter type the existence of balanced system of cell representations is sufficient to compute the $\mathbf{a}$-function and we explicitly construct such a system in type $\tilde{G}_2$ for arbitrary parameters. We then investigate the connection between Kazhdan-Lusztig cells and the Plancherel Theorem in type $\tilde{G}_2$, allowing us to prove ${\bf P1}$ and determine the set of Duflo involutions. From there, the proof of the remaining conjectures follows very naturally, essentially from the combinatorics of Weyl characters of types $G_2$ and $A_1$, along with some explicit computations for the finite cells.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.