Papers
Topics
Authors
Recent
2000 character limit reached

Optimal rates of linear convergence of the averaged alternating modified reflections method for two subspaces

Published 17 Nov 2017 in math.OC and math.NA | (1711.06521v1)

Abstract: The averaged alternating modified reflections (AAMR) method is a projection algorithm for finding the closest point in the intersection of convex sets to any arbitrary point in a Hilbert space. This method can be seen as an adequate modification of the Douglas--Rachford method that yields a solution to the best approximation problem. In this paper we consider the particular case of two subspaces in a Euclidean space. We obtain the rate of linear convergence of the AAMR method in terms of the Friedrichs angle between the subspaces and the parameters defining the scheme, by studying the linear convergence rates of the powers of matrices. We further optimize the value of these parameters in order to get the minimal convergence rate, which turns out to be better than the one of other projection methods. Finally, we provide some numerical experiments that demonstrate the theoretical results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.