Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Optimizing relinearization in circuits for homomorphic encryption (1711.06319v1)

Published 25 Oct 2017 in cs.DS, cs.CR, and math.OC

Abstract: Fully homomorphic encryption (FHE) allows an untrusted party to evaluate arithmetic cir- cuits, i.e., perform additions and multiplications on encrypted data, without having the decryp- tion key. One of the most efficient class of FHE schemes include BGV and FV schemes, which are based on the hardness of the RLWE problem. They share some common features: ciphertext sizes grow after each homomorphic multiplication; multiplication is much more costly than addition, and the cost of homomorphic multiplication scales linearly with the input ciphertext sizes. Furthermore, there is a special relinearization operation that reduce the size of a ciphertext, and the cost of relinearization is on the same order of magnitude as homomorpic multiplication. This motivates us to define a discrete optimization problem, which is to decide where (and how much) in a given circuit to relinearize, in order to minimize the total computational cost. In this paper, we formally define the relinearize problem. We prove that the problem is NP-hard. In addition, in the special case where each vertex has at most one outgoing edge, we give a polynomial-time algorithm.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube