Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Ranks of operators in simple C*-algebras with stable rank one (1711.04721v3)

Published 13 Nov 2017 in math.OA

Abstract: Let $A$ be a separable, unital, simple C*-algebra with stable rank one. We show that every strictly positive, lower semicontinuous, affine function on the simplex of normalized quasitraces of $A$ is realized as the rank of an operator in the stabilization of $A$. Assuming moreover that $A$ has locally finite nuclear dimension, we deduce that $A$ is $\mathcal{Z}$-stable if and only if it has strict comparison of positive elements. In particular, the Toms-Winter conjecture holds for separable, unital, simple, approximately subhomogeneous C*-algebras with stable rank one.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.