Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multidimensional entropic uncertainty relation based on a commutator matrix in position and momentum spaces (1711.04566v2)

Published 13 Nov 2017 in quant-ph

Abstract: The uncertainty relation for continuous variables due to Byalinicki-Birula and Mycielski expresses the complementarity between two $n$-uples of canonically conjugate variables $(x_1,x_2,\cdots x_n)$ and $(p_1,p_2,\cdots p_n)$ in terms of Shannon differential entropy. Here, we consider the generalization to variables that are not canonically conjugate and derive an entropic uncertainty relation expressing the balance between any two $n$-variable Gaussian projective measurements. The bound on entropies is expressed in terms of the determinant of a matrix of commutators between the measured variables. This uncertainty relation also captures the complementarity between any two incompatible linear canonical transforms, the bound being written in terms of the corresponding symplectic matrices in phase space. Finally, we extend this uncertainty relation to R\'enyi entropies and also prove a covariance-based uncertainty relation which generalizes Robertson relation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.