Papers
Topics
Authors
Recent
2000 character limit reached

A unified framework for hard and soft clustering with regularized optimal transport

Published 12 Nov 2017 in cs.LG and stat.ML | (1711.04366v2)

Abstract: In this paper, we formulate the problem of inferring a Finite Mixture Model from discrete data as an optimal transport problem with entropic regularization of parameter $\lambda\geq 0$. Our method unifies hard and soft clustering, the Expectation-Maximization (EM) algorithm being exactly recovered for $\lambda=1$. The family of clustering algorithm we propose rely on the resolution of nonconvex problems using alternating minimization. We study the convergence property of our generalized $\lambda-$EM algorithms and show that each step in the minimization process has a closed form solution when inferring finite mixture models of exponential families. Experiments highlight the benefits of taking a parameter $\lambda>1$ to improve the inference performance and $\lambda\to 0$ for classification.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.