Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deterministic parallel analysis: An improved method for selecting factors and principal components (1711.04155v4)

Published 11 Nov 2017 in stat.ME

Abstract: Factor analysis and principal component analysis (PCA) are used in many application areas. The first step, choosing the number of components, remains a serious challenge. Our work proposes improved methods for this important problem. One of the most popular state-of-the-art methods is Parallel Analysis (PA), which compares the observed factor strengths to simulated ones under a noise-only model. This paper proposes improvements to PA. We first de-randomize it, proposing Deterministic Parallel Analysis (DPA), which is faster and more reproducible than PA. Both PA and DPA are prone to a shadowing phenomenon in which a strong factor makes it hard to detect smaller but more interesting factors. We propose deflation to counter shadowing. We also propose to raise the decision threshold to improve estimation accuracy. We prove several consistency results for our methods, and test them in simulations. We also illustrate our methods on data from the Human Genome Diversity Project, where they significantly improve the accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.