Papers
Topics
Authors
Recent
Search
2000 character limit reached

On hyperbolic attractors and repellers of endomorphisms

Published 9 Nov 2017 in math.DS | (1711.03338v1)

Abstract: It is well known that topological classification of dynamical systems with hyperbolic dynamics is significantly defined by dynamics on nonwandering set. F. Przytycki generalized axiom $A$ for smooth endomorphisms that was previously introduced by S. Smale for diffeomorphisms and proved spectral decomposition theorem which claims that nonwandering set of an $A$-endomorphism is a union of a finite number basic sets. In present paper the criterion for a basic sets of an $A$-endomorphism to be an attractor is given. Moreover, dynamics on basic sets of codimension one is studied. It is shown, that if an attractor is a topological submanifold of codimension one of type $(n-1, 1)$, then it is smoothly embedded in ambient manifold and restriction of the endomorphism to this basic set is an expanding endomorphism. If a basic set of type $(n, 0)$ is a topological submanifold of codimension one, then it is a repeller and restriction of the endomorphism to this basic set is also an expanding endomorphism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.