Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Bloch theory-based gradient recovery method for computing topological edge modes in photonic graphene (1711.01088v2)

Published 3 Nov 2017 in math.NA

Abstract: Photonic graphene, a photonic crystal with honeycomb structures, has been intensively studied in both theoretical and applied fields. Similar to graphene which admits Dirac Fermions and topological edge states, photonic graphene supports novel and subtle propagating modes (edge modes) of electromagnetic waves. These modes have wide applications in many optical systems. In this paper, we propose a novel gradient recovery method based on Bloch theory for the computation of topological edge modes in the honeycomb structure. Compared to standard finite element methods, this method provides higher order accuracy with the help of gradient recovery technique. This high order accuracy is highly desired for constructing the propagating electromagnetic modes in applications. We analyze the accuracy and prove the superconvergence of this method. Numerical examples are presented to show the efficiency by computing the edge mode for the $\mathcal{P}$-symmetry and $\mathcal{C}$-symmetry breaking cases in honeycomb structures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.