A representation theorem for the $p^n$ torsion of the Brauer group in characteristic $p$ (1711.00980v3)
Abstract: If $K$ is a field of characteristic $p$ then the $p$-torsion of the Brauer group, ${}p{\rm Br\,}(K)$, is represented by a quotient of the group of $1$-forms, $\Omega1(K)$. Namely, we have a group isomorphism $$\alpha_p:\Omega1(K)/\langle{\rm d}a,\, (ap-a){\rm dlog}b\, :\, a,b\in K,\, b\neq 0\rangle\to{}_p{\rm Br\,}(K),$$ given by $a{\rm d}b\mapsto [ab,b)_p$ $\forall a,b\in K$, $b\neq 0$. Here $[\cdot,\cdot )_p:K/\wp (K)\times K\times/K{\times p}\to{}_p{\rm Br\,}(K)$ denotes the Artin-Schreier symbol. In this paper we generalize this result. Namely, we prove that for every $n\geq 1$ we have a representation of ${}{pn}{\rm Br\,}(K)$ by a quotient of $\Omega1(W_n(K))$, where $W_n(K)$ is the truncation of length $n$ of the ring of $p$-typical Witt vectors, i.e. $W_{{1,p,\ldots,p{n-1}}}(K)$. Explicitly, we have a group isomorphism $$\alpha_{pn}:\Omega1(W_{pn}(K))/\langle Fa{\rm d}b-a{\rm d}Vb\, :\, a,b\in W_n(K),\, ([ap]-[a]){\rm dlog}[b]\, :\, a,b\in K,\, b\neq 0\rangle\to{}_{pn}{\rm Br\,}(K).$$ Here $F$ is the Frobenius isomorphism, $V$ is the Verschiebung map and $[a]$ is the Teichm\"uller representative of $a\in K$, $[a]=(a,0,0,\ldots )$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.