Papers
Topics
Authors
Recent
2000 character limit reached

Concave losses for robust dictionary learning (1711.00659v1)

Published 2 Nov 2017 in cs.LG and stat.ML

Abstract: Traditional dictionary learning methods are based on quadratic convex loss function and thus are sensitive to outliers. In this paper, we propose a generic framework for robust dictionary learning based on concave losses. We provide results on composition of concave functions, notably regarding super-gradient computations, that are key for developing generic dictionary learning algorithms applicable to smooth and non-smooth losses. In order to improve identification of outliers, we introduce an initialization heuristic based on undercomplete dictionary learning. Experimental results using synthetic and real data demonstrate that our method is able to better detect outliers, is capable of generating better dictionaries, outperforming state-of-the-art methods such as K-SVD and LC-KSVD.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.