Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Universality of the least singular value for sparse random matrices (1711.00580v2)

Published 2 Nov 2017 in math.PR

Abstract: We study the distribution of the least singular value associated to an ensemble of sparse random matrices. Our motivating example is the ensemble of $N\times N$ matrices whose entries are chosen independently from a Bernoulli distribution with parameter $p$. These matrices represent the adjacency matrices of random Erd\H{o}s--R\'enyi digraphs and are sparse when $p\ll 1$. We prove that in the regime $pN\gg 1$, the distribution of the least singular value is universal in the sense that it is independent of $p$ and equal to the distribution of the least singular value of a Gaussian matrix ensemble. We also prove the universality of the joint distribution of multiple small singular values. Our methods extend to matrix ensembles whose entries are chosen from arbitrary distributions that may be correlated, complex valued, and have unequal variances.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube