Papers
Topics
Authors
Recent
Search
2000 character limit reached

Universality of the least singular value for sparse random matrices

Published 2 Nov 2017 in math.PR | (1711.00580v2)

Abstract: We study the distribution of the least singular value associated to an ensemble of sparse random matrices. Our motivating example is the ensemble of $N\times N$ matrices whose entries are chosen independently from a Bernoulli distribution with parameter $p$. These matrices represent the adjacency matrices of random Erd\H{o}s--R\'enyi digraphs and are sparse when $p\ll 1$. We prove that in the regime $pN\gg 1$, the distribution of the least singular value is universal in the sense that it is independent of $p$ and equal to the distribution of the least singular value of a Gaussian matrix ensemble. We also prove the universality of the joint distribution of multiple small singular values. Our methods extend to matrix ensembles whose entries are chosen from arbitrary distributions that may be correlated, complex valued, and have unequal variances.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.