Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonparametric Identification in Index Models of Link Formation (1710.11230v5)

Published 30 Oct 2017 in econ.EM

Abstract: We consider an index model of dyadic link formation with a homophily effect index and a degree heterogeneity index. We provide nonparametric identification results in a single large network setting for the potentially nonparametric homophily effect function, the realizations of unobserved individual fixed effects and the unknown distribution of idiosyncratic pairwise shocks, up to normalization, for each possible true value of the unknown parameters. We propose a novel form of scale normalization on an arbitrary interquantile range, which is not only theoretically robust but also proves particularly convenient for the identification analysis, as quantiles provide direct linkages between the observable conditional probabilities and the unknown index values. We then use an inductive "in-fill and out-expansion" algorithm to establish our main results, and consider extensions to more general settings that allow nonseparable dependence between homophily and degree heterogeneity, as well as certain extents of network sparsity and weaker assumptions on the support of unobserved heterogeneity. As a byproduct, we also propose a concept called "modeling equivalence" as a refinement of "observational equivalence", and use it to provide a formal discussion about normalization, identification and their interplay with counterfactuals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.