Bounds for the Morse index of free boundary minimal surfaces (1710.10971v3)
Abstract: Inspired by work of Ejiri-Micallef on closed minimal surfaces, we compare the energy index and the area index of a free-boundary minimal surface of a Riemannian manifold with boundary, and show that the area index is controlled from above by the area and the topology of the surface. Combining these results with work of Fraser-Li, we conclude that the area index of a free-boundary minimal surface in a convex domain of Euclidean three-space, is bounded from above by a linear function of its genus and its number of boundary components. We also prove index bounds for submanifolds of higher dimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.