Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic variance reduced multiplicative update for nonnegative matrix factorization (1710.10781v2)

Published 30 Oct 2017 in cs.NA, cs.CV, cs.LG, and stat.ML

Abstract: Nonnegative matrix factorization (NMF), a dimensionality reduction and factor analysis method, is a special case in which factor matrices have low-rank nonnegative constraints. Considering the stochastic learning in NMF, we specifically address the multiplicative update (MU) rule, which is the most popular, but which has slow convergence property. This present paper introduces on the stochastic MU rule a variance-reduced technique of stochastic gradient. Numerical comparisons suggest that our proposed algorithms robustly outperform state-of-the-art algorithms across different synthetic and real-world datasets.

Citations (11)

Summary

We haven't generated a summary for this paper yet.