Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multilevel Approach For Nonnegative Matrix Factorization (1009.0881v3)

Published 4 Sep 2010 in math.OC, cs.NA, and math.NA

Abstract: Nonnegative Matrix Factorization (NMF) is the problem of approximating a nonnegative matrix with the product of two low-rank nonnegative matrices and has been shown to be particularly useful in many applications, e.g., in text mining, image processing, computational biology, etc. In this paper, we explain how algorithms for NMF can be embedded into the framework of multilevel methods in order to accelerate their convergence. This technique can be applied in situations where data admit a good approximate representation in a lower dimensional space through linear transformations preserving nonnegativity. A simple multilevel strategy is described and is experimentally shown to speed up significantly three popular NMF algorithms (alternating nonnegative least squares, multiplicative updates and hierarchical alternating least squares) on several standard image datasets.

Citations (56)

Summary

We haven't generated a summary for this paper yet.