Papers
Topics
Authors
Recent
2000 character limit reached

Floquet Many-body Engineering: Topological and Many-body Physics in Phase Space Lattices (1710.09716v2)

Published 26 Oct 2017 in quant-ph, cond-mat.mes-hall, cond-mat.other, cond-mat.quant-gas, and nlin.CD

Abstract: Hamiltonians which are inaccessible in static systems can be engineered in periodically driven many-body systems, i.e., Floquet many-body systems. We propose to use interacting particles in a one-dimensional (1D) harmonic potential with periodic kicking to investigate two-dimensional (2D) topological and many-body physics. Depending on the driving parameters, the Floquet Hamiltonian of single kicked harmonic oscillator has various lattice structures in phase space. The noncommutative geometry of phase space gives rise to the topology of the system. We investigate the effective interactions of particles in phase space and find that the point-like contact interaction in quasi-1D real space becomes a long-rang Coulomb-like interaction in phase space, while the hardcore interaction in pure-1D real space becomes a confinement quark-like potential in phase space. We also find that the Floquet exchange interaction does not disappear even in the classical limit, and can be viewed as an effective long-range spin-spin interaction induced by collision. Our proposal may provide platforms to explore new physics and exotic phases by \textit{Floquet many-body engineering}.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.