Functional approximations with Stein's method of exchangeable pairs
Abstract: We combine the method of exchangeable pairs with Stein's method for functional approximation. As a result, we give a general linearity condition under which an abstract Gaussian approximation theorem for stochastic processes holds. We apply this approach to estimate the distance of a sum of random variables, chosen from an array according to a random permutation, from a Gaussian mixture process. This result lets us prove a functional combinatorial central limit theorem. We also consider a graph-valued process and bound the speed of convergence of the distribution of its rescaled edge counts to a continuous Gaussian process.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.