Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Higher order convergence rates for Bregman iterated variational regularization of inverse problems (1710.09244v3)

Published 25 Oct 2017 in math.NA

Abstract: We study the convergence of variationally regularized solutions to linear ill-posed operator equations in Banach spaces as the noise in the right hand side tends to $0$. The rate of this convergence is determined by abstract smoothness conditions on the solution called source conditions. For non-quadratic data fidelity or penalty terms such source conditions are often formulated in the form of variational inequalities. Such variational source conditions (VSCs) as well as other formulations of such conditions in Banach spaces have the disadvantage of yielding only low-order convergence rates. A first step towards higher order VSCs has been taken by Grasmair (2013) who obtained convergence rates up to the saturation of Tikhonov regularization. For even higher order convergence rates, iterated versions of variational regularization have to be considered. In this paper we introduce VSCs of arbitrarily high order which lead to optimal convergence rates in Hilbert spaces. For Bregman iterated variational regularization in Banach spaces with general data fidelity and penalty terms, we derive convergence rates under third order VSC. These results are further discussed for entropy regularization with elliptic pseudodifferential operators where the VSCs are interpreted in terms of Besov spaces and the optimality of the rates can be demonstrated. Our theoretical results are confirmed in numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.