Approximate Span Liftings
Abstract: We develop new abstractions for reasoning about relaxations of differential privacy: R\'enyi differential privacy, zero-concentrated differential privacy, and truncated concentrated differential privacy, which express different bounds on statistical divergences between two output probability distributions. In order to reason about such properties compositionally, we introduce approximate span-lifting, a novel construction extending the approximate relational lifting approaches previously developed for standard differential privacy to a more general class of divergences, and also to continuous distributions. As an application, we develop a program logic based on approximate span-liftings capable of proving relaxations of differential privacy and other statistical divergence properties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.