Intertwinings, second-order Brascamp-Lieb inequalities and spectral estimates (1710.08106v1)
Abstract: We explore the consequences of the so-called intertwinings between gradients and Markov diffusion operators on $Rd$ in terms of second-order Brascamp-Lieb inequalities for log-concave distributions and beyond, extending our inequalities established in a previous paper. As a result, we derive some convenient lower bounds on the $(d+1){th}$ positive eigenvalue depending on the spectral gap of the dual Markov diffusion operator given by the intertwining. To see the relevance of our approach, we apply our spectral results in the case of perturbed product measures, freeing us from Helffer's classical method based on uniform spectral estimates for the one-dimensional conditional distributions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.