Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Cluster algebras and Jones polynomials (1710.08063v2)

Published 23 Oct 2017 in math.GT, math.CO, and math.RA

Abstract: We present a new and very concrete connection between cluster algebras and knot theory. This connection is being made via continued fractions and snake graphs. It is known that the class of 2-bridge knots and links is parametrized by continued fractions, and it has recently been shown that one can associate to each continued fraction a snake graph, and hence a cluster variable in a cluster algebra. We show that up to normalization by the leading term the Jones polynomial of the 2-bridge link is equal to the specialization of this cluster variable obtained by setting all initial cluster variables to 1 and specializing the initial principal coefficients of the cluster algebra as follows $y_1=t{-2}$ and $ y_i=-t{-1}$, for all $i> 1$. As a consequence we obtain a direct formula for the Jones polynomial of a 2-bridge link as the numerator of a continued fraction of Laurent polynomials in $q=-t{-1}$. We also obtain formulas for the degree and the width of the Jones polynomial, as well as for the first three and the last three coefficients. Along the way, we also develop some basic facts about even continued fractions and construct their snake graphs. We show that the snake graph of an even continued fraction is ismorphic to the snake graph of a positive continued fraction if the continued fractions have the same value. We also give recursive formulas for the Jones polynomials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.