Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold regularization based on Nystr{ö}m type subsampling (1710.04872v1)

Published 13 Oct 2017 in stat.ML and cs.LG

Abstract: In this paper, we study the Nystr{\"o}m type subsampling for large scale kernel methods to reduce the computational complexities of big data. We discuss the multi-penalty regularization scheme based on Nystr{\"o}m type subsampling which is motivated from well-studied manifold regularization schemes. We develop a theoretical analysis of multi-penalty least-square regularization scheme under the general source condition in vector-valued function setting, therefore the results can also be applied to multi-task learning problems. We achieve the optimal minimax convergence rates of multi-penalty regularization using the concept of effective dimension for the appropriate subsampling size. We discuss an aggregation approach based on linear function strategy to combine various Nystr{\"o}m approximants. Finally, we demonstrate the performance of multi-penalty regularization based on Nystr{\"o}m type subsampling on Caltech-101 data set for multi-class image classification and NSL-KDD benchmark data set for intrusion detection problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.