Dual Variational Methods for a nonlinear Helmholtz system (1710.04526v2)
Abstract: This paper considers a pair of coupled nonlinear Helmholtz equations \begin{align*} -\Delta u - \mu u = a(x) \left( |u|\frac{p}{2} + b(x) |v|\frac{p}{2} \right)|u|{\frac{p}{2} - 2}u, \end{align*} \begin{align*} -\Delta v - \nu v = a(x) \left( |v|\frac{p}{2} + b(x) |u|\frac{p}{2} \right)|v|{\frac{p}{2} - 2}v \end{align*} on $\mathbb{R}N$ where $\frac{2(N+1)}{N-1} < p < 2\ast$. The existence of nontrivial strong solutions in $W{2, p}(\mathbb{R}N)$ is established using dual variational methods. The focus lies on necessary and sufficient conditions on the parameters deciding whether or not both components of such solutions are nontrivial.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.