Papers
Topics
Authors
Recent
2000 character limit reached

DocEmul: a Toolkit to Generate Structured Historical Documents

Published 10 Oct 2017 in cs.CV | (1710.03474v1)

Abstract: We propose a toolkit to generate structured synthetic documents emulating the actual document production process. Synthetic documents can be used to train systems to perform document analysis tasks. In our case we address the record counting task on handwritten structured collections containing a limited number of examples. Using the DocEmul toolkit we can generate a larger dataset to train a deep architecture to predict the number of records for each page. The toolkit is able to generate synthetic collections and also perform data augmentation to create a larger trainable dataset. It includes one method to extract the page background from real pages which can be used as a substrate where records can be written on the basis of variable structures and using cursive fonts. Moreover, it is possible to extend the synthetic collection by adding random noise, page rotations, and other visual variations. We performed some experiments on two different handwritten collections using the toolkit to generate synthetic data to train a Convolutional Neural Network able to count the number of records in the real collections.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.